REITERATIVE THIO-CLAISEN REARRANGEMENT USING A THIOLACTAM SUBSTRATE

Seiichi TAKANO*, Michiyasu HIRAMA, and Kunio OGASAWARA

Pharmaceutical Institute, Tohoku University, Aobayama

Sendai 980

A thiolactam(1) undergoes facile reiterative thio-Claisen rearrangement to give the α , α -disubstituted lactams with a variety of allyl groups.

Recently we developed a reiterative thio-Claisen rearrangement reaction using acyclic tertiary thioamides as substrate $^{1)}$ and exploiting the reaction we succeeded to establish a general methodology for the syntheses of the iboga $^{2)$, $^{3)}$, the aspidosperma $^{2)}$, and the strychnos $^{4)}$ indole alkaloids. The reaction developed is more advantageous than both the Eschenmoser $^{5)}$ and Johnson $^{6)}$ versions of the Claisen rearrangement as it can be repeated without changing the key functional group and, in principle, it can be carried out as many times as there are α -hydrogen atoms in the thioamide substrates. In practice, however, the last rearrangement could be hardly attained to give the thioamides with quaternary α carbon owing to incapability of forming congested sulfonium intermediates $^{1)}$ (Scheme 1).

We report here an extension of this reaction to a cyclic substrate(1), which allowed the reiterative rearrangement leading to a formation of quaternary center at the α carbon of the thiolactam group(Scheme 2). The reaction could be carried out under mild conditions using a variety of allyl halides as shown in the Table. Among the reactions carried out, when the allyl group bearing carbomethoxy group(2g), concomitant stereoselective double bond migration occurred to give the α , β -unsaturated ester(10) with E-configuration in 77.0% yield. The migration could be suppressed by using sodium hydride in place of sodium methoxide(Table: entry 7), though the former base, upon longer treatment(15h), converted the β , γ -unsaturated

ester(5e) into the α , β -unsaturated ester(10), in 71.8% yield. Treatment of (10) with allyl bromide(2a), followed by sodium methoxide gave the α , α -disubstituted thiolactam(11) in 37.5% yield(scheme 3).

Scheme 1

Scheme 2

The following experimental procedure is representative of the conversion: The thiolactam(1), 2.3g, 20mmol, in acetonitrile(30ml) was stirred with allyl bromide(2a), 4.84g, 40mmol, at room temperature under nitrogen for 2 days. The reaction mixture was concentrated in vacuo to give the crude sulfonium base(3). The crude(3) in THF(75ml) was stirred with sodium methoxide, 1.62g, 30mmol, at 0°C for 15min and the stirring was continued for 15h at room temperature. To a mixture was added aqueous NH₄Cl solution and was extracted with methylene chloride. The extract was washed with water, dried over Na₂SO₄, and was evaporated in vacuo. The crude product was purified using a column chromatography(silica gel) to give pure (5a), 2.8g, 90.3%. The second rearrangement could be carried out under the same

conditions. Table									
		allyl		produ	ict ⁸⁾			yield	bp(Torr) ^C
entry	lactam	halide	R ¹	R ²	R ³	R ⁴		(%)	
1	(1)	(2a)	Н	Н			(5a) ^a	90.3	89-91 ⁰ (0.3)
2	(1)	(2b)	Н	H			(5a) ^a	82.6	
3	(1)	(2c)	Me	H			(5b) ^a	91.1	178-183 ⁰ (13)
4	(1)	(2d) ²⁾	H	Et			(5c) ^a	86.5	120-125 ⁰ (0.55)
5	(1)	(2e)	H	Cl			(5d) ^a	39.8 ^đ	mp 69-70°
6	(1)	(2f)	Н	Cl			(5d) ^a	77.8	
7	(1)	(2g) ⁹⁾	CO ₂ Me	H			(5e) ^b	81.2	147-150 ⁰ (0.85)
8	(5a)	(2a)	Н	H	Н	H	(9a) ^a	70.3	123-126 ⁰ (0.5)
9	(5a)	(2c)	Н	H	Me	Н	(9b) ^a	61.1	126-130 ⁰ (0.9)
10	(5a)	(2d)	H	Н	Н	Et	(9c) ^a	48.6 ^d	135-138 ⁰ (0.4)
11	(5b)	(2a)	Me	Н	Н	H	(9b) ^a	77.0	
12	(5b)	(2f)	Me	H	Н	Cl	(9d) ^a	31.6 ^d	129-131 ⁰ (0.1)
13	(5c)	(2a)	Н	Et	Н	H	(9c) ^a	63.7	
14	(5c)	(2d)	Н	Et	Н	Et	(9e) ^a	51.3	145-150°(0.45)
15	(5d)	(2c)	Н	cl	Me	Н	(9d) ^a	70.5	

- a: Sodium methoxide (1.5 equiv) was used as base.
- b: Sodium hydride (2.5 equiv) was used as base.
- c: Distilled using a Kugelrohl.
- d: Low yield was attribtuted to incomplete quaternization of the substrate.

2a:
$$\begin{picture}(100,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0$$

Scheme 3

References

- 1) S. Takano, E. Yoshida, M. Hirama, and K. Ogasawara, J. Chem. Soc., Chem. Comm., 776(1976).
- 2) S. Takano, M. Hirama, T. Araki, and K. Ogasawara, J. Am. Chem. Soc., <u>98</u>, 7084 (1976).
- 3) S. Takano, M. Hirama, and K. Ogasawara, J. Org. Chem., <u>45</u>, 3729(1980).
- 4) S. Takano, M. Hirama, and K. Ogasawara, Tetrahedron Lett., 23, 881(1982).
- 5) D. Felix, K. Gachwend-Steen, A.E. Wick, and A. Eschenmoser, Helv. Chim. Acta, 52, 1030(1969).
- 6) W.S. Johnson, L. Werthemann, W.R. Bartlett, T.J. Brocksom, T.-t. Li, D.J. Faulkner, and M.R. Petersen, J. Am. Chem. Soc., 92, 741(1970).
- 7) We have succeeded the construction of a quaternary center at the α carbon of a certain thiolactam via the thio-Claisen rearrangement as described in reference 2, but this was the only example we have made.
- 8) Satisfactory spectroscopic(IR, ¹H-NMR, MS) and analytical data were obtained for all new compounds.
- 9) K. Ziegler, A. Spath, E. Schaaf, W. Schumann, and E. Winkelmann, Ann., 551, 80(1942).

(Received February 15, 1982)